앞선 포스팅에

2017/05/02 - [Cyong's Mathmatics] - 접선의 기울기의 증가와 감소 그리고 변곡점

2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

에서 알수 있듯이


함수 y=f(x)가 구간 [a,b]에서 연속이면 이 구간에서 f(x)는 반드시 최대값과 최소값을 갖습니다.

구간 [a,b] 에서 함수 y=f(x)의 최대값과 최소값을 구하기 위해서는

이 구간에서 함수 y=f(x)의 극대값과 극소값 및 양 끝점의 함수값 f(a), f(b) 을 비교하여

그 중에서 가장 큰 값과 가장 작은 값을 찾으면 됩니다.

case1) 양끝점이 모두 최솟값, 최댓값인 경우

case2) 극솟값이 최솟값인 경우

case3) 극대값과 극솟값이 최솟값, 최댓값인 경우


2017/05/02 - [Cyong's Mathmatics] - 접선의 기울기의 증가와 감소 그리고 변곡점

2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/08 - [Cyong's Mathmatics] - 다양한 함수의 연속성

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


'Cyong's Mathmatics' 카테고리의 다른 글

부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04
접선의 기울기의 증가와 감소 그리고 변곡점  (0) 2017.05.02
함수의 극대와 극소  (0) 2017.05.01
함수의 증가와 감소  (0) 2017.04.30

곡선 y=f(x) 가 어떤 구간에서

f''(x)>0 이면 x가 증가할 때 f'(x)는 증가하므로 접선의 기울기는 증가합니다.

이 때,

곡선 y=f(x) 는 이 구간에서 아래로 볼록 또는 위로 오목이라고 합니다.

또,

곡선 y=f(x) 가 어떤 구간에서

f''(x)<0 이면 x가 증가할 때 f'(x)는 감소하므로 접선의 기울기는 감소합니다.

이 때,

곡선 y=f(x) 는 이 구간에서 위로 볼록 또는 아래로 오목이라고 합니다.

곡선 y=f(x) 위에 있는 한 점의 좌우에서 곡선이 오목에서 볼록으로, 또는 볼록에서 오목으로 바뀔 때, 이 점을 변곡점이라고 합니다.

다시말해 f''(x)=0 이고, x=a 의 좌우에서 f''(x)의 부호가 바뀌면 점(a,f(a))는 함수 y=f(x)의 변곡점입니다.

아래 그림에서 점(a,f(a))가 함수 y=f(x)의 변곡점입니다.



2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

2017/04/13 - [Cyong's Mathmatics] - 미분가능성과 연속성


'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 기본 성질  (0) 2017.05.04
함수의 그래프와 최대, 최소  (0) 2017.05.03
함수의 극대와 극소  (0) 2017.05.01
함수의 증가와 감소  (0) 2017.04.30
평균값의 정리  (2) 2017.04.29

함수 y=f(x)가 x=a 에서 연속이고 x가 증가하면서 x=a 의 좌우에서 f(x)가 증가상태에서 감소상태로 변하면 f(x)는 x=a에서 극대라 하고, 그때의 함수값 f(a)를 극대값이라고 합니다.

반대로

함수 y=f(x)가 x=b 에서 연속이고 x가 증가하면서 x=a 의 좌우에서 f(x)가 감소상태에서 증가상태로 변하면 f(x)는 x=b에서 극소라 하고, 그때의 함수값 f(b)를 극소값이라고 합니다.

극대값과 극소값을 통틀어 극값이라고 합니다.

함수f(x)가 x=a에서 미분가능하고, f(a)가 극대값이라고 하면 충분히 작은 |h|에 대하여 아래와 같은 식이 성립합니다.

h>0일 때,

h<0일 때,

그런데 함수 f(x)는 x=a 에서 미분가능하므로

마찬가지 방법으로 함수 f(x)가 x=a에서 극소인 경우에도 f'(a)=0 임을 보일 수 있습니다.

이 때,

미분가능한 함수 f(x) 에 대하여 f'(a)=0 이라고해서 f(x)가 x=a에서 반드시 극값을 가지는 것은 아닙니다.

대표적인 예로 함수 f(x)=x³를 들 수 있습니다.

 f(x)=x³ 에서 f'(0)=0 이지만

x≠0 일 때

f'(x)=3x²>0.

즉, x=0 의 좌우에서 f'(x)>0 이므로 항상 증가하는 상태에 있습니다.

또한

함수 f(x)가 x=a에서 극값을 가지더라도 f'(a)=0 이 성립하지 않을 수도 있습니다.

대표적인 예로 함수 f(x)=|x|를 들 수 있습니다.

 f(x)=|x| 는 x=0 일 때 극소이지만 f'(0)이 존재하지 않습니다.

미분가능한 함수 f(x)가 x=a에서 극값을 가지면 극값의 정의에 의하여 x=a의 좌우에서 함수의 증가상태와 감소상태가 바뀌므로 도함수 f'(x)의 부호가 바뀝니다. 이 때, f'(x)의 부호의 변화를 그래프로 알아보면 아래와 같습니다.

미분가능한 함수 f(x)에서 f'(a)=0 일 때, x=a 의 좌우에서

ⓐ f'(x)의 부호가 양(+)에서 음(-)으로 바뀌면 f(x)는 x=a에서 극대이고 극대값을 f(a)를 가집니다.

ⓑ f'(x)의 부호가 음(-)에서 양(+)으로 바뀌면 f(x)는 x=a에서 극소이고 극소값을 f(a)를 가집니다.


2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/29 - [Cyong's Mathmatics] - 평균값의 정리

2017/04/28 - [Cyong's Mathmatics] - 롤의 정리

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

2017/04/13 - [Cyong's Mathmatics] - 미분가능성과 연속성

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/02 - [Cyong's Mathmatics] - 함수의 우극한과 좌극한 그리고 극한에 대한 성질

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


'Cyong's Mathmatics' 카테고리의 다른 글

함수의 그래프와 최대, 최소  (0) 2017.05.03
접선의 기울기의 증가와 감소 그리고 변곡점  (0) 2017.05.02
함수의 증가와 감소  (0) 2017.04.30
평균값의 정리  (2) 2017.04.29
롤의 정리  (0) 2017.04.28

함수 f(x)가 어떤 구간의 임의의 x의 값 x₁, x₂에 대하여

x₁ < x₂ 일 때, f(x₁) < f(x₂) 이면

f(x)는 그 구간에서 증가한다고 합니다.

한편,

x₁ < x₂ 일 때, f(x₁) > f(x₂) 이면

f(x)는 그 구간에서 감소한다고 합니다.


함수 y=f(x)에서 충분히 작은 임의의 양수 h에 대하여

f(a-h) < f(a) < f(a+h) 일 때,

f(x) 는 x=a 에서 증가상태에 있다고 하고,

f(a-h) > f(a) > f(a+h) 일 때,

f(x) 는 x=a 에서 감소상태에 있다고 합니다.

다음은,

함수의 증가, 감소와 미분계수의 부호의 관계에 대해서 알아보도록 하겠습니다.

함수 f(x) 의 x=a 에서의 미분계수가 양수이면 다음이 성립합니다.

여기서,

|h|가 충분히 작으면 아래의 식이 성립합니다.

이때,

h>0 이면 f(a+h) > f(a)

h<0 이면 f(a+h) < f(a)

이므로 함수 f(x) 는 x=a 에서 증가상태에 있습니다.

같은 방법으로

f'(a)<0 이면 f(x) 는 x=a 에서 감소상태에 있음을 보일 수 있습니다.

함수 f(x) 의 도함수 f'(x) 가 어떤 구간에서 f'(x)>0 이면 f(x)는 이 구간의 모든 점에서 증가상태에 있으므로 f(x)는 그 구간에서 증가합니다.

반대로 

함수 f(x) 의 도함수 f'(x) 가 어떤 구간에서 f'(x)<0 이면 f(x)는 이 구간의 모든 점에서 감소상태에 있으므로 f(x)는 그 구간에서 감소합니다.



2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

2017/04/13 - [Cyong's Mathmatics] - 미분가능성과 연속성

2017/04/12 - [Cyong's Mathmatics] - 미분계수의 기하학적 의미



'Cyong's Mathmatics' 카테고리의 다른 글

접선의 기울기의 증가와 감소 그리고 변곡점  (0) 2017.05.02
함수의 극대와 극소  (0) 2017.05.01
평균값의 정리  (2) 2017.04.29
롤의 정리  (0) 2017.04.28
접선의 방정식  (0) 2017.04.27

최대값 ㆍ 최소값의 정리


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이면

이 함수는 닫힌 구간 [a,b] 에서

반드시

최댓값과 최솟값을 가집니다.

중간값의 정리


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이고

f(a)≠f(b) 이면,

f(a)와 f(b) 사이에 있는 임의의 값 k에 대하여

f(c)=k

인 실수 c가 a, b 사이에 적어도 하나는 존재합니다.

중간값의 정리의 활용


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이고

f(a)와 f(b)의 부호가 서로 다르면,

(즉, f(a)f(b)<0 이면)

중간값의 정리에 의하여 

f(x)=0

은 a, b 사이에 적어도 하나의 실근을 가집니다.



2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/08 - [Cyong's Mathmatics] - 다양한 함수의 연속성

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질


'Cyong's Mathmatics' 카테고리의 다른 글

미분계수의 기하학적 의미  (0) 2017.04.12
미분계수  (0) 2017.04.11
연속함수의 성질  (0) 2017.04.09
다양한 함수의 연속성  (0) 2017.04.08
함수의 연속과 불연속  (0) 2017.04.07

+ Recent posts