정적분을 통해서 여러가지를 구할 수 있습니다.

그 두번째 시간! 바로 그래프의 부피입니다.

아래의 그림과 같이 어떤 입체도형이 주어져 있고 한 직선을 x축으로 정하였을 때,

 x좌표가 a, b인 두 점을 지나 x축에 수직인 두 평면 사이에 있는 부분의 부피를 구해보도록 하겠습니다.

x축 위의 구간 [a,b]를 n등분하여 양 끝점과 분점을 차례로

라 하고, 소구간의 길이를 Δx라고 합시다.

또, 좌표가 인 점을 지나 x축에 수직인 평면으로 입체를 잘랐을 때,

생기는 단면의 넓이를 라고 하면, 밑면의 넓이가 이고 높이가 Δx인 k번째 기둥의 부피는 이므로 n개의 기둥의 부피의 합

 

따라서 구하는 입체의 부피 V는 구분구적법과 정정분의 정의에 의하여

함수 f(x)가 구간[a,b]에서 연속일 때, 곡선 y=f(x)를 x축의 둘레로 회전시켜서 생기는 회전체의 부피V를 구해보도록 하겠습니다.

위의 그림과 같이 x좌표가 x인 점을 지나 x축에 수직인 평면으로 이 회전체를 자르면, 그 단면은 반지름의 길이가 |y|인 원이 됩니다.

그 단면의 넓이를 S(x)라고 하면

따라서, 구하는 회전체의 부피

마찬가지로 구간 [c,d]에서 곡선 x=g(y)를 y축의 둘레로 회전시킬 때 생기는 회전체의 부피를 같은 방법으로 구하면 아래와 같이 나타낼 수 있습니다.



2017/05/11 - [Cyong's Mathmatics] - 정적분의 활용-넓이편

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 치환적분  (0) 2017.05.14
부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

정적분을 통해서 여러가지를 구할 수 있습니다.

그 첫번째가 바로 그래프의 넓이입니다.

㈀ 구간 [a,b]에서 f(x)≥0 일 때,

㈁ 구간 [a,b]에서 f(x)≤0 일 때,

곡선 y=f(x)는 y=-f(x)와 x축에 대하여 대칭이고 -f(x)≥0 이므로

㈂  구간 [a,c]에서 f(x)≤0 이고, 구간 [c,b]에서 f(x)≥0 일 때,

곡선과 y축 사이의 넓이는 곡선과 x축 사이의 넓이를 구할 때와 같이 생각하여 구하면 됩니다.

즉, x=g(y)가 구간[c,d]에서 g(y)≥0 이면 곡선 x=g(y)와 y축 및 두 직선 y=c, y=d로 둘러싸인 도형의 넓이

g(y)≤0 일 때의 넓이는 앞에서와 같이

따라서 아래 그림과 같이 x=g(y)가 주어질 때 구간[c,d]에서 곡선 x=g(y)와 y축 사이의 넓이



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07

함수 y=f(t)가 구간 [a,b]에서 연속이고 f(t)≥0 이라고 하면

아래 그림과 같이 구간 [a,b]에 속하는 임의의 x에 대하여 a에서 x까지의 곡선 y=f(t)와 t축 사이의 넓이를 S(x)라 하면

이 때, x의 증분 Δx(Δx>0)에 대하여 S(x)의 증분을 ΔS라고 하면

ΔS=S(x+Δx)-S(x).

한편,

구간 [x,x+Δx]에서 함수 f(t)는 연속이므로 최대값과 최소값을 각각 M,m이라고 하면

mΔx≤ΔS≤MΔx

여기서 Δx→0 이면

함수 f(t)는 [a,b]에서 연속함수이므로

Δx→0 이면 m→f(x), M→f(x)

적분과 미분의 관계에서 S'(x)=f(x)이므로 S(x)는 f(x)의 부정적분입니다.

여기서 f(x)의 또 다른 부정적분의 하나를 F(x)라고 하면 아래와 같은 식이 성립합니다

(C는 적분상수)……ⓐ

S(x)의 정의에 의하여 x=a이면 S(a)=0이므로 ⓐ에서

이것을 ⓐ에 대입하면

이 식에 x=b(a<b)를 대입하고 적분변수 t를 x로 바꾸면

……ⓑ

이 것을 정적분의 기본 정리라고 합니다.

이때 ⓑ의 우변 F(b)-F(a)를 기호로 아래와 같이 나타낼 수 있습니다.

지금까지는 a<b 일 때

정적분 를 정의하였으나,

a=b, a>b일 때에는 아래와 같이 정의할 수 있습니다.

위의 정의에 의하여 a>b이고 F'(x)=f(x)일 때,

따라서 정적분의 기본정리는 아래끝, 위끝의 대소에 관계없이 항상 성립한다.■



2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07
부정적분  (0) 2017.05.05

두 함수 y=f(y), u=g(x) 가 미분가능할 때,

합성함수 y=f(g(x))의 도함수를 구해보도록 하겠습니다.

x의 증분 Δx 에 대한 u의 증분을 Δu, u의 증분 Δu 에 대한 y의 증분을 Δy 라고 하면

그런데

두 함수 y=f(u), u=g(x) 는 미분가능하므로

여기서,

u=g(x) 는 연속이므로 Δx→0 일 때, Δu→0 입니다.

따라서

다음은 

미분가능한 함수 y=f(x) 에 대하여

 (n은 자연수)

가 성립함을 수학적 귀납법을 통해 증명하도록 하겠습니다.

ⓐ n=1 일 때

따라서 위에 주어진 등식이 성립합니다.

ⓑ 만약 n=k 일 때 성립한다고 가정한다면

따라서 n=k+1 일 때에도 위에 주어진 등식이 성립합니다.

따라서 ⓐ, ⓑ 를 통해  

 (n은 자연수)

가 성림됨을 알 수 있습니다.□

'Cyong's Mathmatics' 카테고리의 다른 글

음함수의 미분법  (0) 2017.04.22
매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함수의 미분법  (0) 2017.04.16
미분법의 기본 공식  (0) 2017.04.15
도함수의 정의  (0) 2017.04.14

두함수 f(x), g(x) 가 미분가능할 때,

몫의 도함수를 구해보도록 하겠습니다.

먼저,

함수

에 대하여

그런데 함수 g(x) 는 미분가능한 함수이므로


그리고,

함수

라고 하면

이므로

따라서

여기서 g(x)는 미분가능한 함수이므로 연속입니다.

즉,

이므로


한편,

함수

에 대하여

이므로

두 함수의 곱의 미분법을 이용하면


n이 0 또는 양의 정수일 때,

 의 도함수는


n이 음의 정수일 때,

n=-m (m은양의 정수)이라고 하면


따라서

n이 정수일 때 

 의 도함수는

입니다.

'Cyong's Mathmatics' 카테고리의 다른 글

매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함성함수의 미분법  (0) 2017.04.17
미분법의 기본 공식  (0) 2017.04.15
도함수의 정의  (0) 2017.04.14
미분가능성과 연속성  (0) 2017.04.13

지금까지 구간과 여러 함수의 연속과 불연속에 대해서 배웠습니다.

이번 포스팅에서는 연속함수의 성질에 대해서 알아보도록 하겠습니다.

연속함수의 성질


어떤 구간에서 두 함수 f(x), g(x)가 연속이면 다음 함수들도 그 구간에서 연속입니다.

ⓐ  (단, c는 상수)

ⓑ 

ⓒ 

ⓓ  (단, g(x)≠0)

증명

두 함수 f(x), g(x)가 모두 x=a에서 연속이면

연속의 정의와 함수의 극한에 대한 성질에 의하여

ⓐ  (단, c는 상수)

ⓑ 

ⓒ 

ⓓ g(x)≠0이면 

'Cyong's Mathmatics' 카테고리의 다른 글

미분계수  (0) 2017.04.11
최대값, 최소값, 중간값의 정리  (0) 2017.04.10
다양한 함수의 연속성  (0) 2017.04.08
함수의 연속과 불연속  (0) 2017.04.07
열린구간과 닫힌 구간, 반열린구간  (1) 2017.04.06

삼각함수의 극한



(증명)



일 때


위의 그림과 같이

중심이 O인 단위원 위에 ∠AOB=x 인 두 점 A, B를 잡습니다.


점 A에서 원 O 에 그은 접선과 반직선 OB와의 교점을 T라고 하면

△OAB, 부채꼴OAB, △OAT 의 넓이 사이에  


△OAB 의 넓이 < 부채꼴OAB 의 넓이 < △OAT 의 넓이


인 관계가 성립하므로 다음 부등식을 얻을 수 있습니다.



이때, sinx > 0 이므로 

의 각 변을 sinx 로 나누면


여기서

 

이므로

함수의 극한의 대소 관계에 의하여




일 때

x<0이므로 x=-t라고 하면

 x→-0일 때, t→+0 이므로


따라서 ⓐ, ⓑ에 의하여 

입니다.■



2017/04/02 - [Cyong's Mathmatics] - 함수의 우극한과 좌극한 그리고 극한에 대한 성질

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


+ Recent posts