구간 [a,b]를 n등분하여 양 끝점과 각 분점을 차례로

이라 하고, 각 소구간의 길이를 Δx라고 하면 다음과 같습니다.

이 때, 위의 그림과 같이 각 소구간의 오른쪽 끝에서의 함수값이 세로의 길이인 직사각형의 넒이의 합을이라고 하면

여기서,

n→∞ 이면 은 구하는 도형의 넓이 S에 한없이 가까워집니다.

따라서

일반적으로 함수 y=f(x)가 구간 [a,b]에서 연속이면

가 항상 존재합니다.

이 때, 이 극한값을 함수 f(x)의 a에서 b까지의 정적분이라 하고, 기호로는 다음과 같이 나타낼 수 있습니다.

그리고 위의 적분값을 구하는 것을 함수 f(x)를 a에서 b까지 적분한다고 하고, a를 이 정적분의 아래끝, b를 위끝이라고 합니다.

이때,

y=f(x)가 구간 [a,b]에서 연속이고 f(x)≥0 이면

정적분은 곡선 y=f(x), 직선 x=a, x=b 그리고 x축으로 둘러싸인 부분의 넓이를 나타냅니다.

그리고

아래 그림과 같이 y=f(x)가 구간[a,b]에서 연속이고, 양의 값, 음의 값 모두 가지면

정적분은 x축 위쪽의 넓이 S₁에서 x축 아래쪽의 넓이 S₂ 를 뺀 값을 나타냅니다.


2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
여러 가지 함수의 부정적분  (0) 2017.05.07
부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04

+ Recent posts