정적분을 통해서 여러가지를 구할 수 있습니다.

그 첫번째가 바로 그래프의 넓이입니다.

㈀ 구간 [a,b]에서 f(x)≥0 일 때,

㈁ 구간 [a,b]에서 f(x)≤0 일 때,

곡선 y=f(x)는 y=-f(x)와 x축에 대하여 대칭이고 -f(x)≥0 이므로

㈂  구간 [a,c]에서 f(x)≤0 이고, 구간 [c,b]에서 f(x)≥0 일 때,

곡선과 y축 사이의 넓이는 곡선과 x축 사이의 넓이를 구할 때와 같이 생각하여 구하면 됩니다.

즉, x=g(y)가 구간[c,d]에서 g(y)≥0 이면 곡선 x=g(y)와 y축 및 두 직선 y=c, y=d로 둘러싸인 도형의 넓이

g(y)≤0 일 때의 넓이는 앞에서와 같이

따라서 아래 그림과 같이 x=g(y)가 주어질 때 구간[c,d]에서 곡선 x=g(y)와 y축 사이의 넓이



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08

+ Recent posts