롤의 정리를 일반화한 것이 평균값의 정리입니다.

2017/04/28 - [Cyong's Mathmatics] - 롤의 정리


오늘은 평균값 정리에 대해서 알아보도록 하겠습니다.


함수 y=f(x)가 닫힌 구간 [a,b]에서 연속이고, 열린구간 (a,b)에서 미분가능할 때

가 되는 c가 a와 b 사이에 적어도 하나 존재하는데, 이를 평균값 정리라고 합니다.

두 점 (a,f(a)), (b,f(b))를 지나는 직선의 방정식을 y=g(x)라고 하면

이 때, 함수 h(x)=f(x)-g(x) 라고 하면 h(x)는 열린 구간 (a,b) 에서 미분가능하며

h(a)=h(b)=0

입니다.

따라서 롤의 정리에 의하여

인 c가 a와 b 사이에 적어도 하나 존재합니다.

즉,

인 c가 열린 구간 (a,b) 안에 적어도 하나 존재합니다.

평균값의 정리의 뜻을 함수의 그래프를 통해서 살펴보면,

평균값의 정리에서

는 곡선 y=f(x) 위의 두 점 A(a,f(a)), B(b,f(b)) 를 지나는 직선의 기울기를 나타냅니다.

따라서 평균값의 정리는 열린 구간 (a,b)에서 직선AB와 평행한 곡선 y=f(x) 의 접선이 적어도 하나 존재함을 의미합니다.



2017/04/28 - [Cyong's Mathmatics] - 롤의 정리

2017/04/27 - [Cyong's Mathmatics] - 접선의 방정식

2017/04/06 - [Cyong's Mathmatics] - 열린구간과 닫힌 구간, 반열린구간

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/10 - [Cyong's Mathmatics] - 최대값, 최소값, 중간값의 정리


'Cyong's Mathmatics' 카테고리의 다른 글

함수의 극대와 극소  (0) 2017.05.01
함수의 증가와 감소  (0) 2017.04.30
롤의 정리  (0) 2017.04.28
접선의 방정식  (0) 2017.04.27
지수함수의 도함수  (0) 2017.04.26

함수 f(x)가 닫힌 구간 [a,b]에서 연속이면 f(x)는 그 구간에서 최대값과 최소값을 갖습니다.

이성질로부터 롤의 정리가 성립합니다.


롤의 정리

함수 y=f(x)가 닫힌 구간 [a,b]에서 연속이고, 열린 구간(a,b)에서 미분가능할 때, f(a)=f(b)이면 f'(c)=0 인 c가 a와 b 사이에 적어도 하나 존재합니다.


롤의 정리 증명

ⓐ y=f(x)가 상수함수인 경우

열린 구간 (a,b)에 속하는 모든 점 c에서 f'(c)=0 입니다.

ⓑ y=f(x)가 상수함수가 아닌 경우

f(a)=f(b)이므로 양 끝점을 제외한 점 x=c에서 최대값 또는 최소값을 가집니다.


⑴x=c 에서 최대값 f(c)를 가질 때

f(c+Δx)-f(c)≤0 이므로

이 성립합니다.


한편, 함수 f(x)는 x=c 에서 미분가능하므로 좌극한과 우극한이 같아야 합니다.

따라서 


⑵ x=c 에서 최소값 f(c)를 가질 때

⑴와 같은 방법으로 f'(c)=0. □



2017/04/06 - [Cyong's Mathmatics] - 열린구간과 닫힌 구간, 반열린구간

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/10 - [Cyong's Mathmatics] - 최대값, 최소값, 중간값의 정리

2017/04/02 - [Cyong's Mathmatics] - 함수의 우극한과 좌극한 그리고 극한에 대한 성질

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


'Cyong's Mathmatics' 카테고리의 다른 글

함수의 증가와 감소  (0) 2017.04.30
평균값의 정리  (2) 2017.04.29
접선의 방정식  (0) 2017.04.27
지수함수의 도함수  (0) 2017.04.26
로그함수의 도함수  (0) 2017.04.25

+ Recent posts