삼각함수의 극한



(증명)



일 때


위의 그림과 같이

중심이 O인 단위원 위에 ∠AOB=x 인 두 점 A, B를 잡습니다.


점 A에서 원 O 에 그은 접선과 반직선 OB와의 교점을 T라고 하면

△OAB, 부채꼴OAB, △OAT 의 넓이 사이에  


△OAB 의 넓이 < 부채꼴OAB 의 넓이 < △OAT 의 넓이


인 관계가 성립하므로 다음 부등식을 얻을 수 있습니다.



이때, sinx > 0 이므로 

의 각 변을 sinx 로 나누면


여기서

 

이므로

함수의 극한의 대소 관계에 의하여




일 때

x<0이므로 x=-t라고 하면

 x→-0일 때, t→+0 이므로


따라서 ⓐ, ⓑ에 의하여 

입니다.■



2017/04/02 - [Cyong's Mathmatics] - 함수의 우극한과 좌극한 그리고 극한에 대한 성질

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


+ Recent posts