앞선 포스팅에

2017/05/02 - [Cyong's Mathmatics] - 접선의 기울기의 증가와 감소 그리고 변곡점

2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

에서 알수 있듯이


함수 y=f(x)가 구간 [a,b]에서 연속이면 이 구간에서 f(x)는 반드시 최대값과 최소값을 갖습니다.

구간 [a,b] 에서 함수 y=f(x)의 최대값과 최소값을 구하기 위해서는

이 구간에서 함수 y=f(x)의 극대값과 극소값 및 양 끝점의 함수값 f(a), f(b) 을 비교하여

그 중에서 가장 큰 값과 가장 작은 값을 찾으면 됩니다.

case1) 양끝점이 모두 최솟값, 최댓값인 경우

case2) 극솟값이 최솟값인 경우

case3) 극대값과 극솟값이 최솟값, 최댓값인 경우


2017/05/02 - [Cyong's Mathmatics] - 접선의 기울기의 증가와 감소 그리고 변곡점

2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/08 - [Cyong's Mathmatics] - 다양한 함수의 연속성

2017/04/02 - [Cyong's Mathmatics] - 함수의 극한 정리


'Cyong's Mathmatics' 카테고리의 다른 글

부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04
접선의 기울기의 증가와 감소 그리고 변곡점  (0) 2017.05.02
함수의 극대와 극소  (0) 2017.05.01
함수의 증가와 감소  (0) 2017.04.30

곡선 y=f(x) 가 어떤 구간에서

f''(x)>0 이면 x가 증가할 때 f'(x)는 증가하므로 접선의 기울기는 증가합니다.

이 때,

곡선 y=f(x) 는 이 구간에서 아래로 볼록 또는 위로 오목이라고 합니다.

또,

곡선 y=f(x) 가 어떤 구간에서

f''(x)<0 이면 x가 증가할 때 f'(x)는 감소하므로 접선의 기울기는 감소합니다.

이 때,

곡선 y=f(x) 는 이 구간에서 위로 볼록 또는 아래로 오목이라고 합니다.

곡선 y=f(x) 위에 있는 한 점의 좌우에서 곡선이 오목에서 볼록으로, 또는 볼록에서 오목으로 바뀔 때, 이 점을 변곡점이라고 합니다.

다시말해 f''(x)=0 이고, x=a 의 좌우에서 f''(x)의 부호가 바뀌면 점(a,f(a))는 함수 y=f(x)의 변곡점입니다.

아래 그림에서 점(a,f(a))가 함수 y=f(x)의 변곡점입니다.



2017/05/01 - [Cyong's Mathmatics] - 함수의 극대와 극소

2017/04/30 - [Cyong's Mathmatics] - 함수의 증가와 감소

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

2017/04/13 - [Cyong's Mathmatics] - 미분가능성과 연속성


'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 기본 성질  (0) 2017.05.04
함수의 그래프와 최대, 최소  (0) 2017.05.03
함수의 극대와 극소  (0) 2017.05.01
함수의 증가와 감소  (0) 2017.04.30
평균값의 정리  (2) 2017.04.29

+ Recent posts