곡선 y=f(x) 위의 점 P(a,f(a))에서의 접선의 기울기는 x=a에서의 미분계수 f'(a)와 같습니다.

따라서 곡선 y=f(x) 위의 한 점 P에서의 접선은 점 P(a,f(a))를 지나고 기울기가 f'(a)인 직선이므로 접선의 방정식은 다음과 같습니다.


원 x²+y²=r² 위의 점 P(x₁,y₁)에서의 접선의 방정식은 원의 성질 또는 이차방정식의 판별식을 이용하면 구할 수 있습니다.

앞서 배웠던 음함수의 미분법을 이용하여 접선의 방정식을 구해보도록 하겠습니다.

 

원 x²+y²=r² 의 양변을 x 에 대하여 미분하면

(단, y≠0)

ⓐ y₁≠0 일 때, 점 P(x₁,y₁) 에서의 접선의 기울기는 

입니다.

따라서 점 P에서의 접선의 방정식은

양변에 y₁을 곱하여 정리하면

그런데

 이므로 구하는 접선의 방정식은 

입니다.

ⓑ  y₁=0 일 때, x₁=r 또는 x₁=-r

따라서 접선의 방정식은 x=r 또는 x=-r

그런데 이 방정식은  에서 x₁=r , y₁=0 또는  x₁=-r, y₁=0을 대입한 것과 같습니다.

따라서 원 x²+y²=r² 위의 점 P(x₁,y₁) 에서의 접선의 방정식은

'Cyong's Mathmatics' 카테고리의 다른 글

평균값의 정리  (2) 2017.04.29
롤의 정리  (0) 2017.04.28
지수함수의 도함수  (0) 2017.04.26
로그함수의 도함수  (0) 2017.04.25
삼각함수의 도함수  (0) 2017.04.24

+ Recent posts