곡선 y=f(x) 위의 점 P(a,f(a))에서의 접선의 기울기는 x=a에서의 미분계수 f'(a)와 같습니다.

따라서 곡선 y=f(x) 위의 한 점 P에서의 접선은 점 P(a,f(a))를 지나고 기울기가 f'(a)인 직선이므로 접선의 방정식은 다음과 같습니다.


원 x²+y²=r² 위의 점 P(x₁,y₁)에서의 접선의 방정식은 원의 성질 또는 이차방정식의 판별식을 이용하면 구할 수 있습니다.

앞서 배웠던 음함수의 미분법을 이용하여 접선의 방정식을 구해보도록 하겠습니다.

 

원 x²+y²=r² 의 양변을 x 에 대하여 미분하면

(단, y≠0)

ⓐ y₁≠0 일 때, 점 P(x₁,y₁) 에서의 접선의 기울기는 

입니다.

따라서 점 P에서의 접선의 방정식은

양변에 y₁을 곱하여 정리하면

그런데

 이므로 구하는 접선의 방정식은 

입니다.

ⓑ  y₁=0 일 때, x₁=r 또는 x₁=-r

따라서 접선의 방정식은 x=r 또는 x=-r

그런데 이 방정식은  에서 x₁=r , y₁=0 또는  x₁=-r, y₁=0을 대입한 것과 같습니다.

따라서 원 x²+y²=r² 위의 점 P(x₁,y₁) 에서의 접선의 방정식은

'Cyong's Mathmatics' 카테고리의 다른 글

평균값의 정리  (2) 2017.04.29
롤의 정리  (0) 2017.04.28
지수함수의 도함수  (0) 2017.04.26
로그함수의 도함수  (0) 2017.04.25
삼각함수의 도함수  (0) 2017.04.24

도함수의 정의에 의하여

여기서,

로 놓으면

Δx→0일 때 h→0 이므로


한편, a>0, a≠1 일 때


로그함수가 y=ln|x| 일 때

ⓐ x>0 일 때,  y=ln|x|=lnx 이므로

 

ⓑ x<0 일 때,  y=ln|x|=ln(-x) 이므로

 

따라서 ⓐ, ⓑ에 의하여


한편, 

의 도함수는

이제

함수 f(x)가 미분가능한 함수일  때, 합성함수의 미분법을 이용하여

로그함수가 y=ln|f(x)| 의 도함수를 구해보도록 하겠습니다.

ⓒ f(x)>0 일 때,  |f(x)|=f(x) 이므로

u=f(x)라 하면 y=lnf(x)=lnu

 

ⓓ  f(x)<0 일 때,  |f(x)|=-f(x) 이므로

u=-f(x)라 하면 y=ln{-f(x)}=lnu

따라서 ⓒ, ⓓ에 의하여


일반적으로 로그함수 에서

f(x)가 미분가능하고 f(x)≠0 일 때,

이므로 합성함수의 미분법에 의하여


이것을 활용해서

로그함수의 미분법을 이용하여 α가 실수일 때,

 함수 의 도함수를 구해봅시다.

 함수 에서 양변에 절대값에 자연로그를 취하면

양변을 x에 대하여 미분하면


2017/04/21 - [Cyong's Mathmatics] - 매개변수와 매개변수함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/05 - [Cyong's Mathmatics] - 무리수 e 와 자연로그함수

2017/04/04 - [Cyong's Mathmatics] - 지수함수와 로그함수의 극한

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식


'Cyong's Mathmatics' 카테고리의 다른 글

접선의 방정식  (0) 2017.04.27
지수함수의 도함수  (0) 2017.04.26
삼각함수의 도함수  (0) 2017.04.24
역함수의 미분법  (0) 2017.04.23
음함수의 미분법  (0) 2017.04.22

미분가능한 함수 y=f(x)의 역함수가 존재하고 미분가능할 때 y=f(x)의 역함수의 도함수를 구해보도록 하겠습니다.


이 때, 양변을 x에 대하여 미분하면, 음함수의 미분법에 의하여

이번에는

미분가능한 함수 y=f(x)의 역함수 g(x)가 존재하고 미분가능할 때 합성함수의 미분법을 이용하여 y=g(x)의 역함수의 도함수를 구해보도록 하겠습니다.


g(x)가 f(x)의 도함수이므로

이 때, 합성함수의 미분법에 의하여



2017/04/22 - [Cyong's Mathmatics] - 음함수의 미분법

2017/04/21 - [Cyong's Mathmatics] - 매개변수와 매개변수함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

로그함수의 도함수  (0) 2017.04.25
삼각함수의 도함수  (0) 2017.04.24
음함수의 미분법  (0) 2017.04.22
매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함성함수의 미분법  (0) 2017.04.17

x의 함수y가 f(x,y)=0 의 꼴로 주어졌을 때, y를 x 의 음함수라고 합니다.

예를 들어 x+y+1=0 또는 xy+2x+y=0 은 모두 음함수입니다.

이때,

음함수를 양함수로 고치지 않고, y를 x의 함수로 보아 도함수를 구하는 것을 음함수의 미분법이라고 합니다.


음함수의 미분법 이용하여 r이 유리수일 때,

함수 의 도함수를 구해보도록 하겠습니다.


(m,n은 정수, m≠0)이라고 하면

이 때, 양변을 x에 대하여 미분하면, 음함수의 미분법에 의하여



2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식


'Cyong's Mathmatics' 카테고리의 다른 글

삼각함수의 도함수  (0) 2017.04.24
역함수의 미분법  (0) 2017.04.23
매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함성함수의 미분법  (0) 2017.04.17
함수의 미분법  (0) 2017.04.16

+ Recent posts