을지로 맛집 만선호프입니다

낮엔 주변이 타일공장?!이다가 밤만 되면 변하는 주변 풍경!!!
뭔가..중국 여행갔을 때 노상에서 먹었던 그런 느낌이 나는 만선호프입니다

여긴 뭐..안주 안물어봅니다...ㅎㅎ
사람 수에 맞춰서 노가리랑 맥주가 나와요~~
그리고...잔이 비워지면 바로 와서 채워주십니다 ㅎㅎㅎ

몇 년 전만해도 만선호프에만 사람들이 북적거렸는데 이제는 주변에 호프집에도 사람들이 북적북적하니 하나의 맥주집 골목이 형성된 것 같았어요

맥주가 맛있지않냐고...사장님께서 오셔서 자랑도 하셨지만
이 곳에서의 가장 큰 포인트는 바로 마약소스!!!뭔가 매콤 달짝지근한게 라면스프맛같으면서도 오묘해서 계속 찍어먹게 되요 ㅎㅎㄹ

다가오는 여름 노상에서의 풍류를 즐기기에 좋은 맥주와 노가리가 맛있는 만선호프입니다

11시가 넘는 시간이었는 것 같은 데 사람들이 북적북적 했었네요 ㅎㅎ
한여름밤에 노상을 즐기고 싶다면 강력추천입니다!!!
오늘은 수요미식회에도 나온 순대맛집 산수갑산에 다녀왔습니다

을지스타몰역에서 골목으로 약간 들어가야되서 처음 가시는 분들은 티맵이나 지도맵 참고하시길 바래요~~

토요일 6시쯤이었는데도 벌써부터 북적거리는 가게!!
지난 번에 9시쯤 갔을 때는 재료가 다 떨어져서 못판다고..한 적이 있어 빨리 갔어요~~

고추, 양배추, 된장, 마늘쫑으로 이루어진 기본 반찬입니다.

저희는 18,000원짜리 모둠순대를 시켰어요

순대가 나오기 전에 나오는 술국!
무한 리필되서 모둠 하나만 시키면 술안주는 걱정안하셔도 되요ㅎ
술이 술술술~~~

먹음직스러운 순대와 부속고기들의 자태입니다!!

부정적분의 치환적분법에서 x=g(t)로 놓으면

여기서

라고 하면

또, x=g(t) 에서 a=g(α), b=g(β)라 하면

따라서

x=g(t)가 미분가능하고, a=g(α), b=g(β)라 하면



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/11 - [Cyong's Mathmatics] - 정적분의 활용-넓이편

2017/05/12 - [Cyong's Mathmatics] - 정적분의 활용-부피편

2017/05/13 - [Cyong's Mathmatics] - 부정적분의 치환적분

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

일반적으로 부정적분

에서 x를 다른 변수 t의 함수 x=g(t)로 놓으면 F(x)=F(g(t))가 됩니다.

F(x)를 t에 대하여 미분하면 합성함수의 미분법에 의하여

따라서

이와 같이 x=g(t)로 놓아 변수 x를 t의 함수로 치환하여 적분하는 방법을 치환적분법이라고 합니다.

치환적분법을 이용하여 부정적분

를 구해보도록 하겠습니다.

u=f(x)로 놓으면

이므로

따라서 아래와 같은 공식이 성립합니다.



2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 치환적분  (0) 2017.05.14
정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

정적분을 통해서 여러가지를 구할 수 있습니다.

그 두번째 시간! 바로 그래프의 부피입니다.

아래의 그림과 같이 어떤 입체도형이 주어져 있고 한 직선을 x축으로 정하였을 때,

 x좌표가 a, b인 두 점을 지나 x축에 수직인 두 평면 사이에 있는 부분의 부피를 구해보도록 하겠습니다.

x축 위의 구간 [a,b]를 n등분하여 양 끝점과 분점을 차례로

라 하고, 소구간의 길이를 Δx라고 합시다.

또, 좌표가 인 점을 지나 x축에 수직인 평면으로 입체를 잘랐을 때,

생기는 단면의 넓이를 라고 하면, 밑면의 넓이가 이고 높이가 Δx인 k번째 기둥의 부피는 이므로 n개의 기둥의 부피의 합

 

따라서 구하는 입체의 부피 V는 구분구적법과 정정분의 정의에 의하여

함수 f(x)가 구간[a,b]에서 연속일 때, 곡선 y=f(x)를 x축의 둘레로 회전시켜서 생기는 회전체의 부피V를 구해보도록 하겠습니다.

위의 그림과 같이 x좌표가 x인 점을 지나 x축에 수직인 평면으로 이 회전체를 자르면, 그 단면은 반지름의 길이가 |y|인 원이 됩니다.

그 단면의 넓이를 S(x)라고 하면

따라서, 구하는 회전체의 부피

마찬가지로 구간 [c,d]에서 곡선 x=g(y)를 y축의 둘레로 회전시킬 때 생기는 회전체의 부피를 같은 방법으로 구하면 아래와 같이 나타낼 수 있습니다.



2017/05/11 - [Cyong's Mathmatics] - 정적분의 활용-넓이편

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 치환적분  (0) 2017.05.14
부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

정적분을 통해서 여러가지를 구할 수 있습니다.

그 첫번째가 바로 그래프의 넓이입니다.

㈀ 구간 [a,b]에서 f(x)≥0 일 때,

㈁ 구간 [a,b]에서 f(x)≤0 일 때,

곡선 y=f(x)는 y=-f(x)와 x축에 대하여 대칭이고 -f(x)≥0 이므로

㈂  구간 [a,c]에서 f(x)≤0 이고, 구간 [c,b]에서 f(x)≥0 일 때,

곡선과 y축 사이의 넓이는 곡선과 x축 사이의 넓이를 구할 때와 같이 생각하여 구하면 됩니다.

즉, x=g(y)가 구간[c,d]에서 g(y)≥0 이면 곡선 x=g(y)와 y축 및 두 직선 y=c, y=d로 둘러싸인 도형의 넓이

g(y)≤0 일 때의 넓이는 앞에서와 같이

따라서 아래 그림과 같이 x=g(y)가 주어질 때 구간[c,d]에서 곡선 x=g(y)와 y축 사이의 넓이



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07

함수 y=f(t)가 구간 [a,b]에서 연속이고 f(t)≥0 이라고 하면

아래 그림과 같이 구간 [a,b]에 속하는 임의의 x에 대하여 a에서 x까지의 곡선 y=f(t)와 t축 사이의 넓이를 S(x)라 하면

이 때, x의 증분 Δx(Δx>0)에 대하여 S(x)의 증분을 ΔS라고 하면

ΔS=S(x+Δx)-S(x).

한편,

구간 [x,x+Δx]에서 함수 f(t)는 연속이므로 최대값과 최소값을 각각 M,m이라고 하면

mΔx≤ΔS≤MΔx

여기서 Δx→0 이면

함수 f(t)는 [a,b]에서 연속함수이므로

Δx→0 이면 m→f(x), M→f(x)

적분과 미분의 관계에서 S'(x)=f(x)이므로 S(x)는 f(x)의 부정적분입니다.

여기서 f(x)의 또 다른 부정적분의 하나를 F(x)라고 하면 아래와 같은 식이 성립합니다

(C는 적분상수)……ⓐ

S(x)의 정의에 의하여 x=a이면 S(a)=0이므로 ⓐ에서

이것을 ⓐ에 대입하면

이 식에 x=b(a<b)를 대입하고 적분변수 t를 x로 바꾸면

……ⓑ

이 것을 정적분의 기본 정리라고 합니다.

이때 ⓑ의 우변 F(b)-F(a)를 기호로 아래와 같이 나타낼 수 있습니다.

지금까지는 a<b 일 때

정적분 를 정의하였으나,

a=b, a>b일 때에는 아래와 같이 정의할 수 있습니다.

위의 정의에 의하여 a>b이고 F'(x)=f(x)일 때,

따라서 정적분의 기본정리는 아래끝, 위끝의 대소에 관계없이 항상 성립한다.■



2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07
부정적분  (0) 2017.05.05
연휴를 맞아 추억의 장소 충무로를 다녀왔습니다.

충무로 맛집하면 가장 먼저 생각나는 그 곳!
일명 빨간 닭한마리집!
닭한마리 가게가 한 군데 더 있는데 거긴 간판이 하얀색이고 여긴 빨간색이라 등나무집을 빨간 닭한마리라 부른다하더군요
그리고 닭한마리 국물색깔도 빨갛습니다
(하얀닭한마리집도 맛있어요~~그리고 거긴 국물이 하얀 닭한마리에요. 입맛에 따라~그날 기분에 따라 정하시면 될 것 같아요)

닭한마리가 나오기 전 양념장을 먼저 만들어야겠죠??
아래 그림처럼 만들면 맛있는 양념장을 만들수있답니다

닭한마리가 나왔어요~

빛깔도 참 맛있어보이쥬??

역시 ~1차로 닭한마리를 다 먹으면 칼국수사리를 시켜야겠죠???

마지막으로 볶음밥으로 먹부림 한번 더~

입맛없고 쌀쌀해지면 항상 생각나는 빨간 닭한마리 등나무집이었습니다:D

구간 [a,b]를 n등분하여 양 끝점과 각 분점을 차례로

이라 하고, 각 소구간의 길이를 Δx라고 하면 다음과 같습니다.

이 때, 위의 그림과 같이 각 소구간의 오른쪽 끝에서의 함수값이 세로의 길이인 직사각형의 넒이의 합을이라고 하면

여기서,

n→∞ 이면 은 구하는 도형의 넓이 S에 한없이 가까워집니다.

따라서

일반적으로 함수 y=f(x)가 구간 [a,b]에서 연속이면

가 항상 존재합니다.

이 때, 이 극한값을 함수 f(x)의 a에서 b까지의 정적분이라 하고, 기호로는 다음과 같이 나타낼 수 있습니다.

그리고 위의 적분값을 구하는 것을 함수 f(x)를 a에서 b까지 적분한다고 하고, a를 이 정적분의 아래끝, b를 위끝이라고 합니다.

이때,

y=f(x)가 구간 [a,b]에서 연속이고 f(x)≥0 이면

정적분은 곡선 y=f(x), 직선 x=a, x=b 그리고 x축으로 둘러싸인 부분의 넓이를 나타냅니다.

그리고

아래 그림과 같이 y=f(x)가 구간[a,b]에서 연속이고, 양의 값, 음의 값 모두 가지면

정적분은 x축 위쪽의 넓이 S₁에서 x축 아래쪽의 넓이 S₂ 를 뺀 값을 나타냅니다.


2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
여러 가지 함수의 부정적분  (0) 2017.05.07
부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04

+ Recent posts