미분을 역으로 생각하면 여러가지 함수의 부정적분에 대해서 알아볼 수 있습니다.

우선

(n은 실수)의 미분법에서 n≠-1 일 때,

이므로

 (단, C는 적분상수)

또, 로그함수의 미분법에서

이므로

삼각함수의 미분법에서

지수함수의 미분법에서

를 역으로 생각해보면 아래와 같은 여러가지 함수의 부정적분을 알 수 있습니다.



2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질


'Cyong's Mathmatics' 카테고리의 다른 글

미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08
부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04
함수의 그래프와 최대, 최소  (0) 2017.05.03

지난 포스팅에서 다루었던 로그함수 미번법을 이용하여

지수함수 의 도함수를 구해보도록 하겠습니다.

의 양변에 자연로그를 취하면

양번을 x에 대하여 미분하면

특히, 함수 의 도함수는 이므로


2017/04/25 - [Cyong's Mathmatics] - 로그함수의 도함수

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법


'Cyong's Mathmatics' 카테고리의 다른 글

롤의 정리  (0) 2017.04.28
접선의 방정식  (0) 2017.04.27
로그함수의 도함수  (0) 2017.04.25
삼각함수의 도함수  (0) 2017.04.24
역함수의 미분법  (0) 2017.04.23

도함수의 정의에 의하여

여기서,

로 놓으면

Δx→0일 때 h→0 이므로


한편, a>0, a≠1 일 때


로그함수가 y=ln|x| 일 때

ⓐ x>0 일 때,  y=ln|x|=lnx 이므로

 

ⓑ x<0 일 때,  y=ln|x|=ln(-x) 이므로

 

따라서 ⓐ, ⓑ에 의하여


한편, 

의 도함수는

이제

함수 f(x)가 미분가능한 함수일  때, 합성함수의 미분법을 이용하여

로그함수가 y=ln|f(x)| 의 도함수를 구해보도록 하겠습니다.

ⓒ f(x)>0 일 때,  |f(x)|=f(x) 이므로

u=f(x)라 하면 y=lnf(x)=lnu

 

ⓓ  f(x)<0 일 때,  |f(x)|=-f(x) 이므로

u=-f(x)라 하면 y=ln{-f(x)}=lnu

따라서 ⓒ, ⓓ에 의하여


일반적으로 로그함수 에서

f(x)가 미분가능하고 f(x)≠0 일 때,

이므로 합성함수의 미분법에 의하여


이것을 활용해서

로그함수의 미분법을 이용하여 α가 실수일 때,

 함수 의 도함수를 구해봅시다.

 함수 에서 양변에 절대값에 자연로그를 취하면

양변을 x에 대하여 미분하면


2017/04/21 - [Cyong's Mathmatics] - 매개변수와 매개변수함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/05 - [Cyong's Mathmatics] - 무리수 e 와 자연로그함수

2017/04/04 - [Cyong's Mathmatics] - 지수함수와 로그함수의 극한

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식


'Cyong's Mathmatics' 카테고리의 다른 글

접선의 방정식  (0) 2017.04.27
지수함수의 도함수  (0) 2017.04.26
삼각함수의 도함수  (0) 2017.04.24
역함수의 미분법  (0) 2017.04.23
음함수의 미분법  (0) 2017.04.22

이번 포스팅에서는

다항함수, 분수함수, 무리함수, 로그함수, 삼각함수, 합성함수의 연속성에 대해서 알아보도록 하겠습니다.



다항함수

일차함수, 이차함수, …

(-∞, ∞)에서 연속.


분수함수

(분모)=0 인 점. 즉 f(x)=0 인 점에서 불연속.


무리함수

f(x)≥0 인 범위에서 연속.


로그함수

(단, a>0, a≠1)

x>0 인 범위. 즉 (0,∞) 에서 연속.


지수함수

(단, a>0, a≠1)

(-∞,∞) 에서 연속.


삼각함수

(-∞,∞) 에서 연속.

x=nπ±π/2에서 불연속. (단, n은 정수)


합성함수

일반적으로

함수 f(x)가 x=a에서 연속이고

함수 g(x)가 x=f(a)에서 연속이면

함성함수 y=(gf)(x)=g(f(x)) 는 x=a에서 연속.

이때,

위의 두 조건 중 어느하나라도 만족하지 않으면

x=a에서 연속이 아닐 수도 있습니다.



2017/04/06 - [Cyong's Mathmatics] - 열린구간과 닫힌 구간, 반열린구간

2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속


지수함수의 극한

위의 그래프에서 알 수 있듯이


지수함수

의 극한은 다음과 같습니다.



로그함수의 극한

위의 그래프에서 알 수 있듯이


로그함수

의 극한은 다음과 같습니다.




+ Recent posts