부정적분의 치환적분법에서 x=g(t)로 놓으면

여기서

라고 하면

또, x=g(t) 에서 a=g(α), b=g(β)라 하면

따라서

x=g(t)가 미분가능하고, a=g(α), b=g(β)라 하면



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/11 - [Cyong's Mathmatics] - 정적분의 활용-넓이편

2017/05/12 - [Cyong's Mathmatics] - 정적분의 활용-부피편

2017/05/13 - [Cyong's Mathmatics] - 부정적분의 치환적분

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

일반적으로 부정적분

에서 x를 다른 변수 t의 함수 x=g(t)로 놓으면 F(x)=F(g(t))가 됩니다.

F(x)를 t에 대하여 미분하면 합성함수의 미분법에 의하여

따라서

이와 같이 x=g(t)로 놓아 변수 x를 t의 함수로 치환하여 적분하는 방법을 치환적분법이라고 합니다.

치환적분법을 이용하여 부정적분

를 구해보도록 하겠습니다.

u=f(x)로 놓으면

이므로

따라서 아래와 같은 공식이 성립합니다.



2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 치환적분  (0) 2017.05.14
정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

정적분을 통해서 여러가지를 구할 수 있습니다.

그 두번째 시간! 바로 그래프의 부피입니다.

아래의 그림과 같이 어떤 입체도형이 주어져 있고 한 직선을 x축으로 정하였을 때,

 x좌표가 a, b인 두 점을 지나 x축에 수직인 두 평면 사이에 있는 부분의 부피를 구해보도록 하겠습니다.

x축 위의 구간 [a,b]를 n등분하여 양 끝점과 분점을 차례로

라 하고, 소구간의 길이를 Δx라고 합시다.

또, 좌표가 인 점을 지나 x축에 수직인 평면으로 입체를 잘랐을 때,

생기는 단면의 넓이를 라고 하면, 밑면의 넓이가 이고 높이가 Δx인 k번째 기둥의 부피는 이므로 n개의 기둥의 부피의 합

 

따라서 구하는 입체의 부피 V는 구분구적법과 정정분의 정의에 의하여

함수 f(x)가 구간[a,b]에서 연속일 때, 곡선 y=f(x)를 x축의 둘레로 회전시켜서 생기는 회전체의 부피V를 구해보도록 하겠습니다.

위의 그림과 같이 x좌표가 x인 점을 지나 x축에 수직인 평면으로 이 회전체를 자르면, 그 단면은 반지름의 길이가 |y|인 원이 됩니다.

그 단면의 넓이를 S(x)라고 하면

따라서, 구하는 회전체의 부피

마찬가지로 구간 [c,d]에서 곡선 x=g(y)를 y축의 둘레로 회전시킬 때 생기는 회전체의 부피를 같은 방법으로 구하면 아래와 같이 나타낼 수 있습니다.



2017/05/11 - [Cyong's Mathmatics] - 정적분의 활용-넓이편

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 치환적분  (0) 2017.05.14
부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09

정적분을 통해서 여러가지를 구할 수 있습니다.

그 첫번째가 바로 그래프의 넓이입니다.

㈀ 구간 [a,b]에서 f(x)≥0 일 때,

㈁ 구간 [a,b]에서 f(x)≤0 일 때,

곡선 y=f(x)는 y=-f(x)와 x축에 대하여 대칭이고 -f(x)≥0 이므로

㈂  구간 [a,c]에서 f(x)≤0 이고, 구간 [c,b]에서 f(x)≥0 일 때,

곡선과 y축 사이의 넓이는 곡선과 x축 사이의 넓이를 구할 때와 같이 생각하여 구하면 됩니다.

즉, x=g(y)가 구간[c,d]에서 g(y)≥0 이면 곡선 x=g(y)와 y축 및 두 직선 y=c, y=d로 둘러싸인 도형의 넓이

g(y)≤0 일 때의 넓이는 앞에서와 같이

따라서 아래 그림과 같이 x=g(y)가 주어질 때 구간[c,d]에서 곡선 x=g(y)와 y축 사이의 넓이



2017/05/10 - [Cyong's Mathmatics] - 정적분의 성질

2017/05/09 - [Cyong's Mathmatics] - 미적분학의 기본 정리

2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

부정적분의 치환적분  (0) 2017.05.13
정적분의 활용-부피편  (0) 2017.05.12
정적분의 성질  (0) 2017.05.10
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-부피편  (0) 2017.05.12
정적분의 활용-넓이편  (0) 2017.05.11
미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07

함수 y=f(t)가 구간 [a,b]에서 연속이고 f(t)≥0 이라고 하면

아래 그림과 같이 구간 [a,b]에 속하는 임의의 x에 대하여 a에서 x까지의 곡선 y=f(t)와 t축 사이의 넓이를 S(x)라 하면

이 때, x의 증분 Δx(Δx>0)에 대하여 S(x)의 증분을 ΔS라고 하면

ΔS=S(x+Δx)-S(x).

한편,

구간 [x,x+Δx]에서 함수 f(t)는 연속이므로 최대값과 최소값을 각각 M,m이라고 하면

mΔx≤ΔS≤MΔx

여기서 Δx→0 이면

함수 f(t)는 [a,b]에서 연속함수이므로

Δx→0 이면 m→f(x), M→f(x)

적분과 미분의 관계에서 S'(x)=f(x)이므로 S(x)는 f(x)의 부정적분입니다.

여기서 f(x)의 또 다른 부정적분의 하나를 F(x)라고 하면 아래와 같은 식이 성립합니다

(C는 적분상수)……ⓐ

S(x)의 정의에 의하여 x=a이면 S(a)=0이므로 ⓐ에서

이것을 ⓐ에 대입하면

이 식에 x=b(a<b)를 대입하고 적분변수 t를 x로 바꾸면

……ⓑ

이 것을 정적분의 기본 정리라고 합니다.

이때 ⓑ의 우변 F(b)-F(a)를 기호로 아래와 같이 나타낼 수 있습니다.

지금까지는 a<b 일 때

정적분 를 정의하였으나,

a=b, a>b일 때에는 아래와 같이 정의할 수 있습니다.

위의 정의에 의하여 a>b이고 F'(x)=f(x)일 때,

따라서 정적분의 기본정리는 아래끝, 위끝의 대소에 관계없이 항상 성립한다.■



2017/05/08 - [Cyong's Mathmatics] - 정적분의 정의

2017/05/07 - [Cyong's Mathmatics] - 여러 가지 함수의 부정적분

2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질

'Cyong's Mathmatics' 카테고리의 다른 글

정적분의 활용-넓이편  (0) 2017.05.11
정적분의 성질  (0) 2017.05.10
정적분의 정의  (0) 2017.05.08
여러 가지 함수의 부정적분  (0) 2017.05.07
부정적분  (0) 2017.05.05

+ Recent posts