함수 y=f(x)의 x=a 에서의 미분가능하다고 한다면

미분계수

가 존재하고 f'(a)는 일정한 값이므로

즉, 함수 y=f(x) 는 x=a 에서 연속입니다.

일반적으로

함수 y=f(x) 는 x=a 에서 미분가능하다고 한다면

y=f(x) 는 x=a 에서 연속입니다.

그러나 그 역은 참이 아닙니다.

'Cyong's Mathmatics' 카테고리의 다른 글

미분법의 기본 공식  (0) 2017.04.15
도함수의 정의  (0) 2017.04.14
미분계수의 기하학적 의미  (0) 2017.04.12
미분계수  (0) 2017.04.11
최대값, 최소값, 중간값의 정리  (0) 2017.04.10

+ Recent posts