미분을 역으로 생각하면 여러가지 함수의 부정적분에 대해서 알아볼 수 있습니다.

우선

(n은 실수)의 미분법에서 n≠-1 일 때,

이므로

 (단, C는 적분상수)

또, 로그함수의 미분법에서

이므로

삼각함수의 미분법에서

지수함수의 미분법에서

를 역으로 생각해보면 아래와 같은 여러가지 함수의 부정적분을 알 수 있습니다.



2017/05/05 - [Cyong's Mathmatics] - 부정적분

2017/05/04 - [Cyong's Mathmatics] - 부정적분의 기본 성질


'Cyong's Mathmatics' 카테고리의 다른 글

미적분학의 기본 정리  (0) 2017.05.09
정적분의 정의  (0) 2017.05.08
부정적분  (0) 2017.05.05
부정적분의 기본 성질  (0) 2017.05.04
함수의 그래프와 최대, 최소  (0) 2017.05.03

다양한 삼각함수의 도함수에 대해서 알아보도록 하겠습니다.

 

ⓐ 삼각함수 y=sinx 의 도함수

도함수의 정의에 의하여

삼각함수의 차를 곱으로 고치는 공식에 의하여

이므로

또한,

따라서, (sinx)'=cosx 입니다.


ⓑ 삼각함수 y=cosx 의 도함수

도함수의 정의에 의하여

삼각함수의 차를 곱으로 고치는 공식에 의하여

이므로

또한,

그리고

이므로 합성함수의 미분에 의하여

따라서, (cosx)'=-sinx 입니다.

ⓒ 삼각함수 y=tanx 의 도함수

이므로, 몫의 미분법에 의하여


 ⓓ 삼각함수 y=secx 의 도함수

이므로, 몫의 미분법에 의하여

 ⓔ 삼각함수 y=cosecx 의 도함수

이므로, 몫의 미분법에 의하여


 ⓕ 삼각함수 y=cotanx 의 도함수

이므로, 몫의 미분법에 의하여


삼각함수의 도함수



2017/04/23 - [Cyong's Mathmatics] - 역함수의 미분법

2017/04/22 - [Cyong's Mathmatics] - 음함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/03 - [Cyong's Mathmatics] - 삼각함수의 극한

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 여러가지 공식

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 합성

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 덧셈정리


'Cyong's Mathmatics' 카테고리의 다른 글

지수함수의 도함수  (0) 2017.04.26
로그함수의 도함수  (0) 2017.04.25
역함수의 미분법  (0) 2017.04.23
음함수의 미분법  (0) 2017.04.22
매개변수와 매개변수함수의 미분법  (0) 2017.04.21

+ Recent posts