다양한 삼각함수의 도함수에 대해서 알아보도록 하겠습니다.

 

ⓐ 삼각함수 y=sinx 의 도함수

도함수의 정의에 의하여

삼각함수의 차를 곱으로 고치는 공식에 의하여

이므로

또한,

따라서, (sinx)'=cosx 입니다.


ⓑ 삼각함수 y=cosx 의 도함수

도함수의 정의에 의하여

삼각함수의 차를 곱으로 고치는 공식에 의하여

이므로

또한,

그리고

이므로 합성함수의 미분에 의하여

따라서, (cosx)'=-sinx 입니다.

ⓒ 삼각함수 y=tanx 의 도함수

이므로, 몫의 미분법에 의하여


 ⓓ 삼각함수 y=secx 의 도함수

이므로, 몫의 미분법에 의하여

 ⓔ 삼각함수 y=cosecx 의 도함수

이므로, 몫의 미분법에 의하여


 ⓕ 삼각함수 y=cotanx 의 도함수

이므로, 몫의 미분법에 의하여


삼각함수의 도함수



2017/04/23 - [Cyong's Mathmatics] - 역함수의 미분법

2017/04/22 - [Cyong's Mathmatics] - 음함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/03 - [Cyong's Mathmatics] - 삼각함수의 극한

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 여러가지 공식

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 합성

2017/04/01 - [Cyong's Mathmatics] - 삼각함수의 덧셈정리


'Cyong's Mathmatics' 카테고리의 다른 글

지수함수의 도함수  (0) 2017.04.26
로그함수의 도함수  (0) 2017.04.25
역함수의 미분법  (0) 2017.04.23
음함수의 미분법  (0) 2017.04.22
매개변수와 매개변수함수의 미분법  (0) 2017.04.21

미분가능한 함수 y=f(x)의 역함수가 존재하고 미분가능할 때 y=f(x)의 역함수의 도함수를 구해보도록 하겠습니다.


이 때, 양변을 x에 대하여 미분하면, 음함수의 미분법에 의하여

이번에는

미분가능한 함수 y=f(x)의 역함수 g(x)가 존재하고 미분가능할 때 합성함수의 미분법을 이용하여 y=g(x)의 역함수의 도함수를 구해보도록 하겠습니다.


g(x)가 f(x)의 도함수이므로

이 때, 합성함수의 미분법에 의하여



2017/04/22 - [Cyong's Mathmatics] - 음함수의 미분법

2017/04/21 - [Cyong's Mathmatics] - 매개변수와 매개변수함수의 미분법

2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식

2017/04/14 - [Cyong's Mathmatics] - 도함수의 정의

'Cyong's Mathmatics' 카테고리의 다른 글

로그함수의 도함수  (0) 2017.04.25
삼각함수의 도함수  (0) 2017.04.24
음함수의 미분법  (0) 2017.04.22
매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함성함수의 미분법  (0) 2017.04.17

x의 함수y가 f(x,y)=0 의 꼴로 주어졌을 때, y를 x 의 음함수라고 합니다.

예를 들어 x+y+1=0 또는 xy+2x+y=0 은 모두 음함수입니다.

이때,

음함수를 양함수로 고치지 않고, y를 x의 함수로 보아 도함수를 구하는 것을 음함수의 미분법이라고 합니다.


음함수의 미분법 이용하여 r이 유리수일 때,

함수 의 도함수를 구해보도록 하겠습니다.


(m,n은 정수, m≠0)이라고 하면

이 때, 양변을 x에 대하여 미분하면, 음함수의 미분법에 의하여



2017/04/17 - [Cyong's Mathmatics] - 함성함수의 미분법

2017/04/16 - [Cyong's Mathmatics] - 함수의 미분법

2017/04/15 - [Cyong's Mathmatics] - 미분법의 기본 공식


'Cyong's Mathmatics' 카테고리의 다른 글

삼각함수의 도함수  (0) 2017.04.24
역함수의 미분법  (0) 2017.04.23
매개변수와 매개변수함수의 미분법  (0) 2017.04.21
함성함수의 미분법  (0) 2017.04.17
함수의 미분법  (0) 2017.04.16

+ Recent posts