함수 

(n은 양의 정수) 

의 도함수를 구해보면

특히,

상수함수 f(x)=c (c는 상수)의 도함수는

입니다.


미분가능한 두 함수 f(x), g(x) 의 실수배, 합, 차로

이루어진 함수의 도함수를 구해보면 다음과 같습니다.

(단, c는 상수)

ⓑ와 같은 방법으로


미분가능한 두 함수 f(x), g(x)의 곱으로

이뤄진 함수의 도함수도 다음과 같이 구할 수 있습니다.

미분가능한 함수 g(x) 는 연속함수이기때문에

미분법의 기본 공식


'Cyong's Mathmatics' 카테고리의 다른 글

함성함수의 미분법  (0) 2017.04.17
함수의 미분법  (0) 2017.04.16
도함수의 정의  (0) 2017.04.14
미분가능성과 연속성  (0) 2017.04.13
미분계수의 기하학적 의미  (0) 2017.04.12

일반적으로 함수 y=f(x) 가 정의역 X 에서 미분가능하면

정의역에 속하는 모든 x 에 대하여

미분계수 f'(x) 를 대응시키는 새로운 함수

f':x → f'(x)

즉,

가 존재합니다.

이 때,

함수 f'(x) 를 f(x) 의 도함수라 하고,

이것을 기호로

라고 나타냅니다.

함수 y=f(x) 에서 그 도함수 f'(x) 를 구하는 것을

함수 y=f(x) 를 x 에 대하여 미분한다라고 하고

그 계산법을 미분법이라고 합니다.

'Cyong's Mathmatics' 카테고리의 다른 글

함수의 미분법  (0) 2017.04.16
미분법의 기본 공식  (0) 2017.04.15
미분가능성과 연속성  (0) 2017.04.13
미분계수의 기하학적 의미  (0) 2017.04.12
미분계수  (0) 2017.04.11

함수 y=f(x)의 x=a 에서의 미분가능하다고 한다면

미분계수

가 존재하고 f'(a)는 일정한 값이므로

즉, 함수 y=f(x) 는 x=a 에서 연속입니다.

일반적으로

함수 y=f(x) 는 x=a 에서 미분가능하다고 한다면

y=f(x) 는 x=a 에서 연속입니다.

그러나 그 역은 참이 아닙니다.

'Cyong's Mathmatics' 카테고리의 다른 글

미분법의 기본 공식  (0) 2017.04.15
도함수의 정의  (0) 2017.04.14
미분계수의 기하학적 의미  (0) 2017.04.12
미분계수  (0) 2017.04.11
최대값, 최소값, 중간값의 정리  (0) 2017.04.10

+ Recent posts