지난 포스팅에서 미분계수에 대략적인 내용을 알아보았으니

이번 포스팅에서는 미분계수의 기하학적 의미에 대해서 알아보도록 하겠습니다.


미분계수의 기하학적 의미


일반적으로 함수 y=f(x) 의 그래프 위의

두 점 P(a,f(a)) , Q(a+Δx,f(a+Δx))

에 대하여 평균변화율

는 직선 PQ 의 기울기를 뜻합니다. 

여기서, 점 P 를 고정하고

Δx 를 0 에 한없이 가까워지게 하면

점 Q 는 그래프 위를 움직이면서 점 A 에 가까워지고,

직선 PQ 는 점 P 를 지나는 직선 PT 에

한없이 가까워짐을 알 수 있습니다.

이때 직선 PT 를 점 P 에서의 곡선 y=f(x) 의 접선이라 하며

점 P 를 접점이라고 합니다.

따라서 Δx→0 일 때, 직선 PQ의 기울기의 극한값인

함수 y=f(x)의 x=a 에서의 미분계수

는 곡선 y=f(x) 위의 점 P(a,f(a)) 에서의

접점 PT의 기울기와 같음을 알 수 있습니다.



2017/04/11 - [Cyong's Mathmatics] - 미분계수

'Cyong's Mathmatics' 카테고리의 다른 글

도함수의 정의  (0) 2017.04.14
미분가능성과 연속성  (0) 2017.04.13
미분계수  (0) 2017.04.11
최대값, 최소값, 중간값의 정리  (0) 2017.04.10
연속함수의 성질  (0) 2017.04.09

함수 y=f(x) 에서 x의 값이 a에서

a+Δx까지 변할 때의 평균변화율은

여기서

Δx→0 일 때 평균변화율의 극한값

이 존재하면

함수 y=f(x)는 x=a에서 미분가능하다고 하고

이 극한값을 함수 y=f(x)는 x=a에서의 순간변화율 또는 미분계수라 하며

기호로는

라고 나타냅니다.


또한, 함수 y=f(x) 가 어떤 구간에 속하는 모든 x의 값에서 미분가능 할 때,

함수 y=f(x) 는 그 구간에서 미분가능하다고 합니다.

특히,

함수 y=f(x) 가 정의역에 속하는 모든 x 의 값에서 미분가능할 때,

함수 y=f(x) 는 미분가능한 함수라고 합니다.


한편, a+Δx=x 라고 하면

Δx=x-a 이고, Δx→0  일 때, x→a 이므로

'Cyong's Mathmatics' 카테고리의 다른 글

미분가능성과 연속성  (0) 2017.04.13
미분계수의 기하학적 의미  (0) 2017.04.12
최대값, 최소값, 중간값의 정리  (0) 2017.04.10
연속함수의 성질  (0) 2017.04.09
다양한 함수의 연속성  (0) 2017.04.08

최대값 ㆍ 최소값의 정리


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이면

이 함수는 닫힌 구간 [a,b] 에서

반드시

최댓값과 최솟값을 가집니다.

중간값의 정리


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이고

f(a)≠f(b) 이면,

f(a)와 f(b) 사이에 있는 임의의 값 k에 대하여

f(c)=k

인 실수 c가 a, b 사이에 적어도 하나는 존재합니다.

중간값의 정리의 활용


함수 f(x)가 닫힌 구간 [a,b] 에서 연속이고

f(a)와 f(b)의 부호가 서로 다르면,

(즉, f(a)f(b)<0 이면)

중간값의 정리에 의하여 

f(x)=0

은 a, b 사이에 적어도 하나의 실근을 가집니다.



2017/04/07 - [Cyong's Mathmatics] - 함수의 연속과 불연속

2017/04/08 - [Cyong's Mathmatics] - 다양한 함수의 연속성

2017/04/09 - [Cyong's Mathmatics] - 연속함수의 성질


'Cyong's Mathmatics' 카테고리의 다른 글

미분계수의 기하학적 의미  (0) 2017.04.12
미분계수  (0) 2017.04.11
연속함수의 성질  (0) 2017.04.09
다양한 함수의 연속성  (0) 2017.04.08
함수의 연속과 불연속  (0) 2017.04.07

+ Recent posts